

Kinetic Analysis and CFD Modelling of Hydrogen-Air Combustion Applied to Scramjet Vehicles

Guido Saccone*, Pasquale Natale, Luigi Cutrone, Marco Marini

Italian Aerospace Research Centre, Capua, Italy

Virtual, 8th April 2022, 7th International Conference on Combustion Science and Processes

STRATOFLY PROJECT

Stratospheric Flying Opportunities for High-Speed Propulsion (STRATOFLY)

- □ Project co-funded by Horizon2020 programme of European Commission involving 10 partners (POLITO, VKI, CIRA, NLR, DLR, ONERA, CNRS, FOI, LTH, TUHH, FICG)
- □ Duration: 30 months (June 2018-November 2020 + 6 months extension)
- Stemming from a series of EC-funded projects, STRATOFLY is a highly multidisciplinary project combining technological and operative issues for hypersonic civil aircrafts studying the feasibility of high-speed passenger stratospheric flight
- □ Technological, environmental, operational and economic factors were taken into account, allowing global sustainability of new air space's exploitation and drastically **reducing transfer time** (antipodal flights in less than 2÷4 hours), **emissions and noise**, and guaranteeing the **required safety**
- Main objectives:
 - ✓ to refine design and CONOPS of the LAPCAT-II MR2.4 vehicle
 - ✓ to reach TRL = 6 by 2035 for the concept
- □ STRATOFLY crucial technologies may represent a step forward to **future** reusable space transportation systems

STRATOFLY VEHICLE

STRATOFLY MR3 in numbers

o Length: 94 m

Wingspan: 41 m

Maximum Take-Off Mass: 400 t

Fuel Mass: 200 t

Liquid hydrogen as fuel

Available Thrust at Take-Off: 4000kN

- Mach 8 Cruise at 32÷33.5 km
- \circ L/D ≈ 7 in hypersonic cruise
- DMR shutdown at 33.5 km, Mach 8
- 300 passengers
- o 19,000 km in 3 hours (BRU-SYD)
- o Ticket Price 3500 €
- Zero CO₂ emissions
- Reduced NO_x emissions

What's inside MR3?

- Bubble structure configuration, to optimize volume effectiveness and structural resistance (Structures)
- Propulsive ducts for the air intake, combustor, turbomachinery (ATR only) and nozzle (Propulsive System)
- Cryogenic tanks (Propellant System)
- Landing gear (Landing Gear System)
- Cabin layout (Payload)
- o Thermal and Energy Management Subsystem
- Thermal Protection System

Environmental Control System
 Avionic System

HYDROGEN COMBUSTION PROPERTIES

- ✓ H₂ gas is strongly diffusive and highly buoyant
- ✓ Overall product of its complete **oxy-combustion** is only **water** → **clean fuel** with **zero carbon emissions**
- ✓ Combustion with air produces also NO_x due to the achievement of elevated flame temperatures
- ✓ Supersonic hydrogen combustion is a challenging process for several reasons as:
 - > injection
 - compressible mixing
 - > chemical kinetics
 - > ignition
- ✓ Very short residence time T (~ 10⁻³ s) of the flow through the combustor chamber that is of the same order of magnitude of
 - chemical kinetic ignition time

flame holding

- vortices generation
- turbulence combustion modelling
- > interactions among shock waves
- boundary layer and heat release

- ✓ Experimental measurements of multispecies, reacting, high-speed, unsteady, turbulent flow fields are very challenging
- ✓ The most convenient way to preliminary design and develop scramjet vehicles often relies on CFD modelling.
- ✓ Chemical modelling of hydrogen/air combustion is of fundamental importance → need of a suitable kinetic mechanism

OD KINETIC ANALYSIS

- ✓ Open-source thermodynamic and kinetic Cantera tool under Python interface
- √ Homogeneous, isochoric, batch reactors
- \checkmark Ignition delay times calculations at several initial operative conditions (T, P, φ)

- ✓ The net reaction rates for every k-th chemical component is determined by Arrhenius expressions, according to the kinetic mechanism under investigation
- ✓ The gaseous mixture averaged density p was calculated assuming an ideal gas behaviour.
- ✓ Mass transport to the reactor walls is infinitely fast.

JACHIMOWSKI - 1988

- ✓ Developed in 1988 at NASA Langley Research Centre in the framework of the National Aero-Space Plane (NASP)
- ✓ Supersonic scramjet combustion at flight speed up to Mach 25
- √ 33 radical, reversible, elementary reactions involving 13 chemical species (including the inert bath gases)
- ✓ Rate coefficients for certain reactions were adjusted in order to obtain the best agreement with the experimental measurements of real hydrogen-air mixtures of ignition delay times reported by Slack
- ✓ At pressures of **0.5, 1** and **2 atm** for **stoichiometric hydrogen/air mixtures**, induction times are very sensitive to the rate coefficients, assigned to the second and ninth reactions of the whole scheme

[R2]
$$H + O_2 \rightarrow OH + O$$

[R9]
$$H+O_2 + M \rightarrow HO_2 + M$$

- ✓ At high flight Mach numbers (M > 12) conditions, reactions involving nitric oxides become greatly important
- ✓ Experimental data by Slack and Grillo show that a limited addition of NO_x to stoichiometric hydrogen/air mixtures decreases the ignition delay times
- ✓ Conversion of the chain-terminating species HO₂ to the very reactive OH radical

[R30]
$$HO_2 + NO \rightarrow NO_2 + OH$$

[R31] $H + NO_2 \rightarrow NO + OH$

KEROMNÈS - 2013

- ✓ **Detailed** kinetic mechanism suitably conceived for investigating the oxidation of **syngas mixture consisting in** H₂/CO/O₂/N₂/Ar at pressures from 1 to 70 bar, over a temperature range of 900-2550 K and equivalence ratios from 0.1 to 4
- ✓ 11 chemical species comprising also the excited radical OH* and interacting among them through 30 reversible reactions
- ✓ Hydrogen reactivity is mainly controlled by the competition between
 - ✓ Chain-branching

[R1] $H + O_2 \rightarrow O + OH$

VS

✓ Pressure dependent chain-propagating

[R9] $H + O_2 (+M) \rightarrow HO_2 (+M)$

✓ Hydrogen ignition under high pressure and intermediate temperature conditions is governed by the fundamental reactions:

[R17]
$$H_2 + HO_2 \rightarrow H + H_2O_2$$

[R15] H_2O_2 (+M) \rightarrow OH + OH (+M)

- ✓ T < 1000 K (RCM): hydrogen oxidation is predominantly controlled by reaction [R9] \rightarrow hydroperoxyl radical i.e., $HO_2 \rightarrow H_2O_2$ according to reaction [R17]
- ✓ Oxygenated water decomposes to two OH radicals as prescribed by reaction [R15]
- \checkmark T > 1100 K (Shock Tube Experiments): Competition between [R1] and [R9] leads to a pressure dependence of τ_{ian} governed by reaction [R1]

Z25 - 2018

□ 22 irreversible steps plus the 3 Zel'dovich NO generation reactions involving 10 chemical species

- √ T < 900 K: R4 competes with R12
 </p>
- ✓ HO₂ concentration increases and alternative reactions R16, R20 become more important and produce H₂O₂ in greater amount

[R4]
$$H + O_2 \rightarrow O + OH$$
 [R12] $H + O_2 (+M) \rightarrow HO_2 (+M)$ [R16] $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ [R20]: $H_2O + HO_2 \rightarrow H_2O_2 + OH$

√ T > 1100 K: R1, R4, R5 and R8 well describe branched-chain explosion

$$[R1] \ H_2 + O_2 \rightarrow H \ + HO_2 \quad [R5] \ OH \ + \ O \rightarrow H \ + \ O_2 \quad [R8] \ H_2 \ + \ OH \ \rightarrow H_2O \ + \ H_2O \$$

 \checkmark R17 is furthermore essential since it consumes H_2O_2 and creates OH radicals decreasing τ_{ign}

[R17]:
$$H_2O_2$$
 (+M) \rightarrow OH + OH (+M)

- ✓ Crossover region → corresponding to 900 K < T < 1100 K
 </p>
- ✓ Dominated by extremely complex chemical processes
- ✓ Several ramjets, scramjets and dual mode engines operate exactly in this connecting critical zone

KINETIC RESULTS - I

✓ Comparison between the OD ignition delay times and the experimental data at the same initial temperature, pressure and equivalence ratios, measured in shock tube and/or RCM tests

KINETIC RESULST - II

- ✓ The best agreement was achieved by the Z25 kinetic mechanism
- ✓ The matching of Jachimowski and Kéromnés kinetic schemes are satisfactory only for high temperature and low pressure conditions
- ✓ In the crossover region and pressure above 2 bar only the Z25 exhibits a quite good behaviour

FULLY-3D CFD MODELLING

Combustor + Nozzle result

R3 result (LFR 2nd order)

R4 result (EDM 1st order)

- ✓ Ansys Fluent® software
- ✓ Temperature contour plots over some slices of the combustion chamber
- ✓ Solution with JR mechanism
- ✓ In order to better understand temperature distribution, iso-surfaces of 20% mass-fraction of H₂ are also reported
- ✓ The CFD run was carried out using both Laminar Finite Rate (LFR) and Eddy Dissipation Model (EDM) combustion models, along with a standard k-ε turbulence model and 2nd order up-wind discretization scheme

CFD VALIDATION

✓ The ground-based testing of M8 flight experiment configuration, conducted in HEG wind tunnel at the German Aerospace Center - DLR , was used as experimental test reference

- ✓ Vehicle geometry was simplified removing the intake
- ✓ Only combustion process along with nozzle expansion was simulated
- ✓ Inlet temperature > 1100 K
- ✓ Unexpected compression that is a consequence of the abrupt temperature increasing caused by the combustion process
- ✓ Predicted pressure peak value is consistent with the experimental measurement
- ✓ Both kinetic schemes (JR as well as Z25) are reliable for 3D CFD simulations of the H₂-O₂ combustion

CONCLUSIONS

- □ Hydrogen/air supersonic combustion process was analysed both on chemical kinetic and CFD points of view
- □ **OD kinetic assessment** in the operative conditions experienced in **scramjet engines** was carried out on literature available combustion mechanisms
- ☐ The **best agreement** with experimental **shock ignition delay times measurements** was achieved with **Z25** scheme
- □ Fully-3D CFD simulations confirmed that kinetic schemes due to Zettervall and also Jachimowski are quite good for pressure predictions when the engine inlet temperature is above 1100 K

✓ THANK YOU FOR YOUR ATTENTION ✓ QUESTIONS?

Dr. Guido Saccone Propulsion and Exploration Technology Department

Via Maiorise snc, 81043, Capua (CE) - Italy

Ph.: 0039 0823623166

E-mail: <u>g.saccone@cira.it</u>

Web: <u>www.cira.it</u>